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Abstract—Although a caregiver tries to be consistent while she
teaches a baby, it is not guaranteed that she never makes errors.
This situation is also true with a digital game, during which the
human player needs to teach a non-player character (NPC). In
this work, we report how a teacher can successfully train the
Developmental Networks (DNs) while she cannot guarantee an
error-free sequence of motor-supervised teaching. We establish
that, under certain conditions, a DN tolerates a significant
number of errors in a teaching sequence as long as the errors
do not overwhelm the correct motor supervisions in terms of the
Z-normalized frequency. We also provide theoretical arguments
why task-nonspecific agents like DNs create a new dimension
for the play values of future digital games. The emergent repre-
sentations in the DN can not only abstract well like a symbolic
representation (e.g., Finite Automaton) but also deal with the
problem of exponential complexity with the traditional symbolic
representations currently prevailing in the artificial intelligence
(AI) field and in the digital gaming field. The experimental results
showed that the speed of convergence to correct actions depends
on the error rates in training.

I. INTRODUCTION

Since the early days of computers, probably first coined
by Allan Turing [1], many researchers [2], [3] have strived
to build robots that resemble what Turing called “child ma-
chines”, in the sense that the robot can be taught through
its autonomous interactions with humans, like how a human
caregiver interacts with a human child. This requires a robot-
like machine to directly interact with the physical world, which
includes human teachers.

In the field of computer game playing, much progress has
been made based on a much simpler interface and a much
restricted domain. Many computer games utilize AI techniques
to improve the gameplay by NPCs. In a “clean” game envi-
ronment, some NPCs’ level of expertise are well above of
many human players. For example, the Deep Blue computer
system, consisting of many networked computers [4], has
won the arguably the best human player of chess. However,
that competition is under well controlled digital interface
where the Deep Blue takes only well-specific instructions of
logic moves. Among the AI techniques, neural networks and
machine learning methods were cited to be the most likely
methods to reach human expert levels, and they have achieved
impressive successes in computer game playing [5], [6].

However, fundamental challenges persisted. First, many
algorithms require handcrafted task-specific representations.

The game designers build several types of agents for different
stages of a game setting, such as path planning, state clas-
sification and skill look-up. The most popular engine is the
Finite Automaton (FA), where each state is represented by
a different symbol whose meaning is specified by a design
document. This results in an increased complexity in game
design and a high demand on human resource, computation
time, and storage space.

Second, such approaches produce a limited amount of be-
haviors as well as their sophistication. As Weng [7] analyzed,
the number of states in a symbolic representation (e.g., FA)
is exponential in the number of concepts (e.g., the number of
setting variables and agent actions). If there is a new type of
representation that can address this problem without requiring
the human designer to consider the exponential number of
concept combinations, the playing value of the game can be
considerably increased since the number of possible action
combinations is too large for the human player to memorize,
predict, and get bored.

In this work, we investigate whether DN is capable of
addressing these two problems and its limitations. We hope
to use DN as a general-purpose “brain-like” engine that
is applicable to a variety of games. For each game, the
human designer prudently design the game environment which
includes the allowed response from the human player and
the display to the human player. The customization of the
engine to a game includes the design of the symbolic sensory
port, the symbolic action port, and the specification of the
computational resource for the engine. In this sense, the
developmental (learning) program of the DN is sensor specific,
effector specific, and “species” (e.g., resource) specific, but not
task specific. Equipped by the DN engine, the NPC can learn
new skills from the game environment through interactions
with the human player (e.g., supervision) but most of time it
is the NPC to autonomously generate its actions based on (1)
the factory trained skills, and (2) the previously learned skills
from the human player.

Mainly inspired by the brain anatomy (e.g., Felleman &
Van Essen [8]), DN regards a simplified brain-like network to
have three areas, the sensory area X , the internal (brain) area
Y and the motor area Z. Different from many artificial neural
networks, the internal neurons in Y have two-way connection
with both X and Z. In principle, the X area could potentially
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model any sensory modality (e.g., vision, audition, and touch),
but in a game, it represents symbolic sensory information (e.g.,
presence of the owner). The motor area Z serves as both input
and output. When the environment supervises Z, Z is the input
to the network. Otherwise, Z gives an output vector to drive
effectors which act on the real world. For a game, the Z vector
consists of many concept zones (e.g., move forward or good).
Within each concept zone, each neuron represents a particular
value of the concept (e.g., a speed). The order of areas from
low to high is: X,Y, Z. For example, X provides bottom-up
input to Y , but Z gives top-down input to Y .

The DN learns incrementally while it performs and learns
concurrently. The learning mechanism used is the biologically
inspired Hebbian learning, which is cell-centered and in-place
in the sense that each neuron is responsible for the learning by
itself and it does not require other extra-cellular mechanisms
to deal with its learning (e.g., no extra-cellular mechanism is
allowed to compute the covariance matrix of its input vector).
This results in a favorable low degree of computational com-
plexity for each neuron (linear in the number of inputs n for
each neuron) and a low degree of computational complexity
for each network update: O(nc) where n is the average number
of connections for each neuron and c is the number of neurons.

The first theorem in [9] with the proof in [9] has establish
the following properties. Give an FA, a DN can learn the FA
from the sequential observations of the input σ and its state
output q, by updating the DN for one observation at a time.
The DN immediately learn all the behavior of FA immedi-
ately and error-free. Therefore, for the game application, we
expect that DN immediately shows the effect of each instance
of learning immediately. A different NPC uses a different
customization of DN. Therefore, group behaviors are natural
outcome of such NPC, but this work does not address group
behaviors.

An important property of DN is that its internal representa-
tion emerges from interactions with the external environments
via its sensory port X and its effector port Z. This makes
DN not only highly flexible and adaptable, but also highly
resource saving in the human designer’s time. The vectoriza-
tion of sensory information and action information enables
DN to compute the similarity between two states, which leads
to the ability of generalization under limited computational
resource and learning experience. The vectorization of sensors
and motors also enables the DN to handle the problem of
combinatorial explosion of states by partitioning the states into
different lobe regions [10].

From WWN-1(Where-What Network) to WWN-5, five em-
bodiments of DN, DN has been tested so far for perfect
training signals only. However, it is impractical for a human
player to only teach an NPC without making any error. In
this work, we study how DN deals with inconsistent training
experience, the effects on its performance and learning speed.
We found that a DN converges to a correct behavior even
though we teach them some errors occasionally. Intuitively,
when one learns to drive along a trajectory, his steering wheel
sometimes turns to left too much and sometimes to right too

much, but over time, the brain can autonomously generate
more and more accurate muscle signals for the desired heading
direction in order to follow a trajectory . This property adds
more flexibility for DN in potential game applications. We
use our first game software currently under development,
EpigenBuddy, as the test bed.

In remainder of this paper, we will introduce some related
works on DN and digital games in section II. Section III
outlines DN architecture and algorithm. In section IV, we
discuss how we customize the DNs for the EpigenBuddy, and
present the simulation results with inconsistent training for
an game setting represented as an FA. Section V gives some
concluding remarks.

II. RELATED WORK

There have been many successful applications of DN before
we use it to build NPCs in digital games. DN was used for
processing spatial information and obtaining spatial attention
[11]. Miyan et al. [12] used DN to process temporal informa-
tion and obtain temporal attention. Zhang & Weng [13] built
the skill transfer model by using developmental architecture.
DN also has shown its capability on spoken language [14] and
speech recognition [15].

On the other hand, since the early stages of game industry,
people recognized the challenges for AI in digital games [16].
Deep Blue beat the world chess champion Kasparov in 1997
was marked as the hallmark of the success of using strategy AI
algorithms in board and card games. With the development of
different digital game genres such as “First-Person Shooter
Games”, “Action-adventure Game”, “Role-Playing Games”,
“Strategy Games”, and “Simulation Games”, modern AI tech-
niques were required to accomplish complex tasks such as
agent’s perception, navigation and decision making [17]. Finite
state machines and neural networks were used in behavior
control [5], [18], rule-based systems for goal planning [19],
evolutionary algorithms were used for tuning parameters [20].
In [21], three main categories of AI techniques (i.e. neural
network, evolutionary approach and reinforcement learning
method) were fully discussed in digital game filed. As a matter
of fact, neural networks have shown the power in various kinds
of learning tasks. Particularly, it appears to be well suited
for player modeling, however such an approach requires a
comprehensive data samples for training and validation. [22]
provided a case study of using supervised neural network in
digital game where a robot was trained.

However, neural networks have proved to be hard to train,
for it is inefficient to tune parameters and requires a quantity
of training examples to cover all possible states that the agents
may encounter in the game [23]. If we trained the neural
networks off-line, especially when a player-modeling approach
was utilized, it is necessary to obtain training examples from a
range of players to ensure the generation of useful game agent
behaviors [24].

Some alternative training methods for neural networks,
especially for online learning were proposed in [25]. In [26]
some constraints on current intelligent interface for digital
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games were concluded, and some criterions for new kind of
intelligent agent were proposed. In [27], the author tried to
build human-like agent in digital games, and he tested his
agent in his game Social Ultimatum.

III. DEVELOPMENTAL NETWORK

A DN is not task-specific as argued by Weng et al [3]. Its
concepts are learned dynamically and incrementally through
interactions with the environments. In [28], Weng discussed
that a DN can simulate any FA. In this section, we will briefly
introduce the DN.

A. DN architecture

A basic DN, has three areas, the sensory area X , the internal
(“brain”) area Y and the motor area Z. An example of DN is
shown in Fig. 1. The internal neurons in Y have bi-directional
connection with both X and Z.
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Fig. 1. A DN has three parts: X zone response for the sensor, Z zone
response for motor, and Y zone correspond to the inner “brain” which has
bi-directional connections with both X and Z. In our game, X does not use
Y inputs. Pixel in yellow and circled by dash-line means it is activated. Pixels
grouped in dotted box are in the same concept zone.

The DP(Developmental Program) for DNs is not task-
specific as suggested for the “brain” in [3] (e.g., not concept-
specific or problem specific). In contrast to a static FA, the
motor area Z of a DN can be directly observed by the environ-
ment (e.g., by the teacher) and thus can be calibrated through
interactive teaching from the environment. The environmental
concepts are learned incrementally through interactions with
the environments. For example, in Fig. 1, the “Food” object
makes the pixels 2, 4 and 6 activated and all other green pixels
remain normal. However, such an image from the “Food”
object is not known during the programming time for the DP.

In principle, the X area can model any sensory modality
(e.g., vision, audition, and touch). The motor area Z serves
both input and output. When the environment supervises Z, Z
is the input to the network. Otherwise, Z gives an output vector

to drive effectors (muscles) which act on the real world. The
order of areas from low to high is: X,Y , and Z. For example,
X provides bottom-up input to Y , but Z gives top-down input
to Y .

B. DN algorithm

DN is modeled as an area of the “brain”. It has its area Y
as a “bridge” for its two banks, X and Z. If Y is meant for
modeling the entire “brain”, X consists of all receptors and Z
consists of all muscles neurons. Y potentially can also model
any Brodmann area in the “brain”. According to many studies
in detailed review by Felleman & Van Essen [8], each area
Y connects in both ways with many other areas as its two
extensive banks.

The most basic function of an area Y seems to be prediction
— predict the signals in its two vast banks X and Y through
space and time. The prediction applies when part of a bank is
not supervised. The prediction also makes its bank less noisy
if the bank can generate its own signals (e.g., X).

A secondary function of Y is to develop bias (like or dislike)
to the signals in the two banks, through what is known in
neuroscience as neuromodulatory systems.

The DN algorithm is as follows. Input areas: X and Z.
Output areas: X and Z. The dimension and representation
of X and Y areas are hand designed based on the sensors
and effectors of the robotic agent or biologically regulated by
the genome. Y is skull-closed inside the “brain”, not directly
accessible by the external world after the birth.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector
r, where V contains all the synaptic weight vectors and
G stores all the neuronal ages. For example, use the
generative DN method discussed below.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
a) Every area A performs mitosis-equivalent if it is

needed, using its bottom-up and top-down inputs
b and t, respectively.

b) Every area A computes its area function f , de-
scribed below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector.
c) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′.
In the remaining discussion, we assume that Y models the

entire “brain”. If X is a sensory area, x ∈ X is always
supervised. The z ∈ Z is supervised only when the teacher
chooses to. Otherwise, z gives (predicts) effector output.

Put intuitively, like the “brain”, the DN repeatedly predicts
the output Z for the next moment. When the predicted Z is
mismatched, learning proceeds to learn the new information
from Z. But, there is no need to check mismatches: learning
takes place anyway.

A generative DN (GDN) automatically generates neurons in
the Y area. If (b, t) is observed for the first time ((the pre-
action of the top-winner is not 1) by the area Y , Y adds (e.g.,
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equivalent to mitosis and cell death, spine growth and death,
and neuronal recruitment) a Y neuron whose synaptic weight
vector is (b, t) with its neuronal age initialized to 1. The idea
of adding neurons is similar to ART and Growing Neural Gas
but they do not take action as input and are not state-based.

C. Unified DN area function

It is desirable that each “brain” area uses the same area
function f , which can develop area specific representation and
generate area specific responses. Each area A has a weight
vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ (1)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree
of match between these two directions v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between two unit
vectors v̇ and ṗ. This enables a match between two vectors
of different magnitudes (e.g., a weight vector from an object
viewed indoor to match the same object when it is viewed
outdoor). The pre-action value ranges in [−1, 1].

This pre-response is inspired by how each neuron takes
many lines of input from bottom-up and top-down sources.
It generalizes across contrast (i.e., the length of vectors). It
uses inner-product v̇ · ṗ to generalize across many different
vectors that are otherwise simply different as with symbols in
an FA. The normalization of the first and second terms above
is for both the bottom-up source and top-down source to be
taken into account, regardless the dimension and magnitude
of each source.

To simulate lateral inhibitions (winner-take-all) within each
area A, top k winners fire. Considering k = 1, the winner
neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scale top-k winners so that the top-
k respond with values in (0, 1]. For k = 1, only the single
winner fires with response value yj = 1 (a pike) and all other
neurons in A do not fire. The response value yj approximates
the probability for ṗ to fall into the Voronoi region of its v̇j
where the “nearness” is r(vb,b,vt, t).

D. DN learning: Hebbian

All the connections in a DN are learned incrementally based
on Hebbian learning — cofiring of the pre-synaptic activity
ṗ and the post-synaptic activity y of the firing neuron. If
the pre-synaptic end and the post-synaptic end fire together,
the synaptic vector of the neuron has a synapse gain yṗ.
Other non-firing neurons do not modify their memory. When
a neuron j fires, its firing age is incremented nj ← nj + 1
and then its synapse vector is updated by a Hebbian-like
mechanism:

vj ← w1(nj)vj + w2(nj)yjṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj) + w2(nj) ≡ 1. The simplest version of w2(nj)
is w2(nj) = 1/nj which corresponds to:

v
(i)
j =

i− 1

i
v
(i−1)
j +

1

i
1ṗ(ti), i = 1, 2, ..., nj ,

where ti is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

v
(nj)
j =

1

nj

nj∑
i=1

ṗ(ti)

where is important for the proof of the optimality of DN in
[29].

The initial condition is as follows. The smallest nj in Eq. (3)
is 1 since nj = 0 after initialization. When nj = 1, vj on the
right side is used for pre-response competition but does not
affect vj on the left side since w1(1) = 1− 1 = 0.

A component in the gain vector yjṗ is zero if the corre-
sponding component in ṗ is zero. Each component in vj so
incrementally computed is the estimated probability for the
pre-synaptic neuron to fire under the condition that the post-
synaptic neuron fires.

E. GDN area functions

For simplicity, let us consider k = 1 for top-k competition.
Y area function:

1) Every neuron computes pre-response using Eq. (1).
2) Find the winner neuron j using Eq. (2).
3) If the winner pre-response is not 2, generate a Y neuron

using the input ṗ as the weight with age 0. The new Y
neuron as it is the winner for sure.

4) The winner neuron j increment its age: nj ← nj + 1,
fire with yj = 1, and updates its synaptic vector, using
Eq. (3).

5) All other neurons do not fire, yi = 0, for all i 6= j, and
do not advance their ages.

Z Area function: This version has k = 1 for top-k
competition within each concept zone.

1) If the dimension of Y has not been incremented, do:
a) Every neuron computes pre-response using Eq. (1).
b) Find the winner neuron j using Eq. (2).

Otherwise, do the following:
a) Supervise the pre-response of every neuron to be

1 or 0 as desired.
b) Add a dimension for the weight vector of every

neuron, initialized to be 0, which may be immedi-
ately updated below.

2) Each winner or supervised-to-fire neuron j increment
its age: nj ← nj + 1, fire with zj = 1, and updates its
synaptic vector, using Eq. (3).

3) All other neurons do not fire, zi = 0, for all i 6= j, and
do not advance their ages.

The Y area function and the Z functions are basically the
same. Z can be supervised but Y cannot since it is inside the
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closed “skull”. During the simple mode of learning discussed
here, neurons responding for backgrounds are suppressed (not
attending), so that no neurons learn the background.

IV. DEVELOPMENTAL AGENTS

We use our digital game, EpigenBuddy, which is a real time
online game as an example to discuss how a Developmental
Agent (DA) is designed and trained. In EpigenBuddy, the story
occurs in a farm, in which several animals are raised as non-
player clients (NPCs, which equal to DAs in EpigenBuddy).

A. Concept Zone Vectorization

In real time online games, the statuses of the game are
unpredictable for the exponential growth of states. DN con-
sider projecting all these states into the state space through
vectorizing the sensory and motor areas for the following
motivations: 1) It dramatically increases the representation
power of sensory and motor areas. The sensory and motor
areas of DN are two input resources of the network, which can
be represented as two vectors X and Z. Suppose that there
are n concept zones and each concept zone has k neurons
each representing a distinct value of the zone. Then, there
are a total of kn states in the vector. When k = 4 and
n = 30, k30 > 1615, more than the number of neurons in the
human brain. 2) It allows the Y area to develop only neurons
(feature clusters) for the typically much lower dimensional
manifolds of data actually observed in the X × Z space.
This advantage only greatly reduces the memory space of
the engine, but also relieves the human programmer from
exhaustively predicting and handcrafting the representations
of all states in such a high dimensional input space X × Z.
According to LCA(Lobe Component Analysis) [10], the self-
organization of the neuronal representation in the X × Z is
dually optimal, optimal in the space (best represent the signal
manifolds) and optimal in time (best representation given the
limited neuronal resource and the limited amount of training
samples).

According to our analysis, the sensory area X can simulate
any sensory modality, motor area Z can simulate any actions
if only the sensors and motors are sophisticated enough. But
in EpigenBuddy, we don’t have to simulate every details
because the game is not grounded. From the viewpoint of
emergent networks [7], each state is composed of several
concepts, each concept is a functional activity of the sensors
or motors. Therefore, we can represent the inputs or outputs
with combination of concepts. Similar functional concepts are
grouped together to form a concept zone, the most convenient
zone partition method is grouping by part of the body. For
the X area which simulates the NPC’s sensory, 10 concept
zones have been created. They are orientation, distance, vision,
audition, touch, role, time, friend or foe, object recognition.
Each concept zone has 2 to 5 concepts and the total concepts
add up to 30. Take the audition concept zone for example, it
includes 3 concepts: nothing, sweet sound, and noisy sound.
The concepts in the same concept zone are encoded by the
neuron activations. We use canonical encoding in our game,

although we can use much less neurons, theoretically, to
encode the concepts in one concept zone. This means that
each neuron represents a concept in each concept zone. In
our digital game, these concepts are rich enough to build a
vivid virtual game world. For example, when the NPC finds
the food, every concept zone will emerge one concept which
represented by an activated neuron to constitute this sensory
input. A 30 bits binary array will be took into the algorithm as
bottom up input, 1 indicates the neuron fired and the concept
emerged. TABLE I lists 5 sensory concept zones.

TABLE I
PARTIAL CONCEPTS OF THE SENSORY AREA X

Concept Zone Concept

Orientation
Front Left
Right Back

Distance
Near Middle
Far

Vision Detect object Detect nothing

Audition
Hear nothing Hear sweet sound
Hear noisy sound

Touch
Touch nothing Comfortable
Pain

It is also impractical and unnecessary to model all the
motors in the game for advanced animals have hundreds of
muscles, which are responsible for controlling various actions.
We divide NPC’s body into 11 parts, they are eyes, forehead,
mouse, nose, face, left & right ear, left & right upper arm, body
with legs and tail. A concept zone is established for each part
of the body and the total number of concepts adds up to 106.
As well as sensory area, each state of the motor area consists
several concepts. A 106 bits binary array is generated by the
algorithm at each epoch, where each bit represents a motor
concept, 1 indicates to activate the corresponding concept. This
array also acts as the top-down input in the following epoch.
TABLE II outlines some motor concept zones.

TABLE II
PARTIAL CONCEPT OF THE MOTOR AREA Z

Concept Zone Concept

Eyes
Normal Smiling . . .
Scared Depressed

Mouth
Normal Chewing . . .
Vomit Eating . . .
Bite . . .

Left & Right Normal Wave hand . . .
Upper arm Grab hand Clapping . . .

Body & Walk Run . . .
Legs Jump Rotate . . .

Intention
Hungry Thirsty . . .
Uncertainty Missing . . .

Notice that the “Eyes” concept zone here is totally different
from the visual concept zone defined in sensory area. In fact, it
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Fig. 2. Game UI for training the NPC. In this figure, the NPC is unhappy
and we are teaching it to be friendly. The list on the right side of the scene
is all concepts of the Eye concept zone.

is a concept zone of motor area to control the facial expression.
We explicitly define intention here as one concept zone for
better game experience. For instance, a bubble containing food
popping on the head of NPC means the NPC is hungry.

In summary, there are two conditions for the zoning of
concepts. (1) Concept (values) are mutually exclusive within
the same concept zone. This means only one concept is
activated at a time, which implies there is only one neuron can
fire at a time so that top-1 operation is applied in each concept
zone to determine the single winner. This condition is useful to
re-conditioning the numeric motor vector. (2) Concepts from
different zones are allowed to fire simultaneously. This allows
the learning for complex (composite) actions.

B. Agent Training

Teaching their NPCs various actions is one main task of
the players. From the viewpoint of FA, the training process
is the process of building the state transition, where the states
emerged dynamically. In EpigenBuddy, the player enters into
the training mode when he wants to train one of his NPCs. In
the training mode, the NPC’s corresponding concepts are listed
besides it, the player chooses the concepts he feels appropriate.
Fig. 2 shows the game UI of training the NPC to be friendly
when the player finds the NPC unhappy.

Having been taught various actions, NPC can automatically
finds out how to deal with the situations automatically. Fig. 3
shows 4 different actions of the NPC when interacts with
player, which are normal, unhappy, depressed and exciting
responses under different conditions.

For convenience, we will train the NPCs some default skills
before the release of the game, such as patrolling for guard,
dancing to music, and playing for fun.

C. Inconsistent Training

In [29], Weng has proved that in each epoch of the training
phase, the synaptic weights of DN are maximum likelihood
estimated and error free under the assumption that the training

examples are consistent. When we train the NPCs off-line,
we don’t need to worry much about the consistence of the
training examples, they can be checked beforehand. But in
EpigenBuddy, chances are high that the players may make
mistakes occasionally, they may teach NPC several contradic-
tive reactions under the same condition.

Fortunately, benefitted from the Hebbian learning rule, we
find that the DAs have the property of converging to the
behaviors which were trained frequently. We give a theoretical
proof of this property here.

For convenience, some notations and terminologies are
defined first:

1) yj is the j-th Y neuron, zk is the k-th Z neuron.
2) vk = (p1, p2, . . . , pc(Y )) is the weight vector of the zk.
3) pj =

fjk
nk

is the amnesic average computed from Heb-
bian learning expression Eq. (3). It is the synaptic weight
from yj to zk which indicates the frequency at which
the yj triggered zk when zk fires.

4) We call fjk
nk||vk‖ as Z-normalized frequency, where ||vk‖

indicates how diverse the Y neurons that trigger the zk
are.

According to the criterions for the concept zone vectorizing,
without loss of generality, we assume that the sensory or motor
area of our DN has only one concept zone, then we have the
following conclusion.

Lemma 1 (Property of Inconsistent Training): Suppose a
DN trained by two inconsistent state transitions s0

σ−→ si,
i = a or b, s0 will transit to the state which has the higher
Z-normalized frequency at any time when it receives σ.

Proof: According to the criterions of vectorization and
our assumption, only one Z neuron which has larger pre-
response value is allowed to fire at any time. By Eq. (1) the
pre-response of zi is:

r(vi, y) = v̇i · ẏ =
pj
‖vi‖

· 1 =
fji/ni
‖vi‖

=
fji

ni‖vi‖
(4)

which is the Z-normalized frequency of zi. ‖vi‖ may affect
which Z neuron to fire since the larger ‖vi‖, the smaller the
pre-response value while other values are the same.

In consistent training, the Z-normalized frequency of zb is
zero since there is no chance to be error if za is correct. When
we trained the DN with two inconsistent actions s0

σ−→ sa
and s0

σ−→ sb, Z-normalized frequency of za and zb can
be computed respectively. Therefore, the Z neuron with the
higher Z-normalized frequency fires. This concludes the proof
that under inconsistent Z-supervised training, the Z neuron
that has the highest Z-normalized frequency fires.

Lemma 1 proves that DN will converge to the state with
higher Z-normalized frequency. This property guarantees that
DN has the capability of rectifying its behaviors in an incon-
sistent environment which is more close to the reality.

Converge speed is another big issue of our algorithm.
In order to check how fast the algorithm to converge, we
manually designed a state transition diagram, which contains
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(a) (b)

(c) (d)

Fig. 3. Four different actions when the player interacts with the NPC. (a)Normal: Nothing special. (b)Unhappy: Hungry for long time. (c)Depressed: Punished
by the player. (d) Exciting: The Player rewards the NPC food.
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Fig. 4. A state transition diagram representing the correct transition rules.
There are 12 states and 5 inputs in the diagram.

12 meaningless states and 5 inputs. Fig. 4 shows this diagram.
During the training phase, we were not observing the rules of
the transition diagram, and we taught the agent some errors
deliberately with a certain probability. For example, when the

agent is in state q1 and receives the input σ1, it is supposed
to transit to q2, but we teach the agent to transit to q3 with
a probability of 10% on purpose. After training for several
epochs, we let the agent run by itself to exam its accuracy. We
found out that although the agent was trained inconsistently,
it converged to the right behavior finally. Fig. 5 shows the
convergence speed under different correct teaching frequency.
The X axis represents the epoch number of average training
times, Y axis represents the precision. The trend in Fig. 5 is
obvious that under 4 different correct teaching frequencies, all
the precisions are converged to 100%. And it is also obvious
that the speed of convergence depends on the correct teaching
frequency, the higher the faster.

V. CONCLUSION AND FUTURE WORK

Using DN, we build a kind of general purpose, flexible
and fault-tolerable agent in our game EpigenBuddy. DAs
increase the efficiency of game design, save the resources,
and reduce the costs due to their task non-specific nature.
The vector representation addresses the exponential number
of problem by allowing the Y vectors to interpolate among
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Fig. 5. Convergence speed under different correct teaching frequency.

a very large, potentially unbounded, number of samples in
the X × Z space. We also established that DAs can learn
well from inconsistent training but they require more training
experience if the training is inconsistent. This property is
important especially in real time online games where players
may make mistakes.

In our next work for EpigenBuddy, we plan to implement
the modulatory system for the DN in our game agents, to
allow the agent to autonomously learn (in addition to motor
supervised learning) via punishments, rewards, and novelty.
The modulatory system is a biological term that accounts
for what is called reinforcement learning and instrumental
conditioning in psychology and machine learning, but it is
more general in the sense that it is also responsible for novelty,
uncertainty, and higher emotion.
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